In vivo comparative imaging of dopamine D2 knockout and wild-type mice with (11)C-raclopride and microPET.

نویسندگان

  • Panayotis K Thanos
  • Nicholas B Taintor
  • David Alexoff
  • Paul Vaska
  • Jean Logan
  • David K Grandy
  • Yuan Fang
  • Jing-Huei Lee
  • Joanna S Fowler
  • Nora D Volkow
  • Marcelo Rubinstein
چکیده

UNLABELLED The use of mice with targeted gene deletions (knockouts [KOs]) provides an important tool to investigate the mechanisms underlying behavior, neuronal development, and the sequella of neuropsychiatric diseases. MRI has been used to image brain structural changes in KO mice but, to our knowledge, the feasibility of using PET to investigate brain neurochemistry in KO mice has not been demonstrated. METHODS We have evaluated the sensitivity of the microPET to image dopamine D2 receptor (DRD2) KO mice (D2-/-). PET measurements were performed in wild-type (D2+/+) mice and KO (D2-/-) mice using a microPET scanner. Briefly, each animal was anesthetized and injected intravenously with (11)C-raclopride, a DRD2-specific ligand, and dynamic PET scanning was performed for 60 min. RESULTS The (11)C-raclopride images of the KO mice showed significantly lower binding in the striatum (ST) than those of the wild-type (WT) mice, which was confirmed by the time-activity curves that revealed equivalent binding in the ST and cerebellum (CB) in KO mice, whereas the WT mice had significantly higher binding in the ST than in the CB. The ST/CB ratio was significantly higher in WT mice than in KO mice (ST/CB = 1.33 +/- 0.13 and 1.05 +/- 0.03, respectively; P < 0.002; n = 10). The microPET images were compared qualitatively with conventional autoradiography images. CONCLUSION These data support the use of microPET as an effective in vivo imaging tool for studying noninvasively KO mice. These same tools can be extended to investigate other genetically engineered murine models of disease. Future studies will seek to use microPET to investigate the relationships between genes, neuronal activity, and behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and evaluation in rats of homologous series of [18F]-labeled dopamine D2/3 receptor agonists based on the 2-aminomethylchroman scaffold as potential PET tracers

BACKGROUND Agonist positron emission tomography (PET) tracers for dopamine D2/3 receptors (D2/3Rs) offer greater sensitivity to changes in endogenous dopamine levels than D2/3R antagonist tracers. D2/3R agonist tracers currently available for clinical research are labeled with the short-lived isotope carbon-11, which limits their use. We aimed to develop high-affinity D2R agonists amenable for ...

متن کامل

Synthesis and evaluation in rats of homologous series of [F]-labeled dopamine D2/3 receptor agonists based on the 2-aminomethylchroman scaffold as potential PET tracers

Background: Agonist positron emission tomography (PET) tracers for dopamine D2/3 receptors (D2/3Rs) offer greater sensitivity to changes in endogenous dopamine levels than D2/3R antagonist tracers. D2/3R agonist tracers currently available for clinical research are labeled with the short-lived isotope carbon-11, which limits their use. We aimed to develop high-affinity D2R agonists amenable for...

متن کامل

Role of dopamine D2 receptors in plasticity of stress-induced addictive behaviours.

Dopaminergic systems are implicated in stress-related behaviour. Here we investigate behavioural responses to chronic stress in dopamine D2 receptor knockout mice and find that anxiety-like behaviours are increased compared with wild-type mice. Repeated stress exposure suppresses cocaine-induced behavioural sensitization, cocaine-seeking and relapse behaviours in dopamine D2 receptor knockout m...

متن کامل

In vivo labeling of the dopamine D2 receptor with N-11C-methyl-benperidol.

A new dopamine D2 receptor radiotracer, N-11C-methyl-benperidol (11C-NMB), was prepared and its in vivo biologic behavior in mice and a baboon was studied. Carbon-11-NMB was determined to bind to specific sites characterized as dopamine D2 receptors. The binding was saturable, reversible, and stereospecific. Kinetic studies in the dopamine D2 receptor-rich striatum showed that 11C-NMB was retai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine

دوره 43 11  شماره 

صفحات  -

تاریخ انتشار 2002